Abstract

Minute virus of mice (MVM) encodes two groups of nonstructural proteins, the 83-kDa NS-1 polypeptides encoded from a contiguous sequence in the left half of the genome and the 25-kDa NS-2 polypeptides, which share a common amino-terminal domain with NS-1 but are multiply spliced. Peptide-specific antibodies were used to demonstrate that three alternatively spliced forms of NS-2 are synthesized when synchronized A9 cells are infected with the prototype strain of MVM, MVM(p), and that each of these species migrates as two bands on sodium dodecyl sulfate-gel electrophoresis, due to the presence of both phosphorylated and unphosphorylated forms. While most NS-1 molecules are located in the nucleus, all three species of NS-2 are predominantly cytoplasmic, and their phosphorylated forms are exclusively cytoplasmic. Although both NS-1 and NS-2 molecules are synthesized early in infection, all forms of NS-2 are synthesized and accumulate three to four times as fast as NS-1 molecules, making them the predominant virally coded proteins in the cell at this time. Despite their common amino-terminal domain, NS-2 molecules turn over rapidly while NS-1 polypeptides persist for many hours. Apart from the fact that the three NS-2 gene products are synthesized in different molar amounts, we were unable to detect any differences in the expression, stability, distribution, or phosphorylation of the various molecular forms, suggesting that these latter characteristics are mediated by their common internal exon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.