Abstract

The route selection of self-propelled filter papers impregnated with camphor for two-branched water channels was investigated. The two-branched water channel was composed of a stem channel and two branch channels, and the branch channels were connected to the stem channel at a junction. When a single camphor paper reached the junction from the stem channel, it selected one of the two routes equivalently. Three or five camphor papers which were placed on a stem channel exhibited either alternate or random route selection depending on the characteristic length between the leading and following papers, Lc. That is, the alternate route selection of the camphor papers for the two-branched water channels was observed at Lc ≤ 25 mm. By contrast, the alternate route selection was broken at Lc > 25 mm. The physicochemical meaning of the threshold value, Lth ∼ 26 mm, between the alternate and random route selections was discussed based on the experimental results. In addition, the distribution length of camphor molecules developed from the leading camphor paper and the change in the spatial gradient of surface tension around the junction supports the value of Lth. These results suggest that autonomous phenomena using inanimate self-propelled objects are important to understand collective motion in living organisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.