Abstract
Toxic recombination events are detected in vegetative Saccharomyces cerevisiae cells through negative growth interactions between certain combinations of mutations. For example, mutations affecting both the Srs2 and Sgs1 helicases result in extremely poor growth, a phenotype suppressed by mutations in genes that govern early stages of recombination. Here, we identify a similar interaction involving double mutations affecting Sgs1 or Top3 and Mus81 or Mms4. We also find that the primary DNA structures that initiate these toxic recombination events cannot be double-strand breaks and thus are likely to be single-stranded DNA. We interpret our results in the context of the idea that replication stalling leaves single-stranded DNA, which can then be processed by two competing mechanisms: recombination and nonrecombination gap-filling. Functions involved in preventing toxic recombination would either avoid replicative defects or act on recombination intermediates. Our results suggest that Srs2 channels recombination intermediates back into the gap-filling route, whereas Sgs1Top3 and Mus81Mms4 are involved in recombination andor in replication to allow replication restart.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.