Abstract

Avian vacuolar myelinopathy (AVM) is a neurologic disease causing recurrent mortality of Bald Eagles ( Haliaeetus leucocephalus ) and American Coots ( Fulica americana ) at reservoirs and small impoundments in the southern US. Since 1994, AVM is considered the cause of death for over 170 Bald Eagles and thousands of American Coots and other species of wild birds. Previous studies link the disease to an uncharacterized toxin produced by a recently described cyanobacterium, Aetokthonos hydrillicola gen. et sp. nov. that grows epiphytically on submerged aquatic vegetation (SAV). The toxin accumulates, likely in the gastrointestinal tract of waterbirds that consume SAV, and birds of prey are exposed when feeding on the moribund waterbirds. Aetokthonos hydrillicola has been identified in all reservoirs where AVM deaths have occurred and was identified growing abundantly on an exotic SAV hydrilla ( Hydrilla verticillata ) in Lake Tohopekaliga (Toho) in central Florida. Toho supports a breeding population of a federally endangered raptor, the Florida Snail Kite ( Rostrhamus sociabilis ) and a dense infestation of an exotic herbivorous aquatic snail, the island applesnail ( Pomacea maculata ), a primary source of food for resident Snail Kites. We investigated the potential for transmission in a new food chain and, in laboratory feeding trials, confirmed that the AVM toxin was present in the hydrilla/A. hydrillicola matrix collected from Toho. Additionally, laboratory birds that were fed apple snails feeding on hydrilla/A. hydrillicola material from a confirmed AVM site displayed clinical signs (3/5), and all five developed brain lesions unique to AVM. This documentation of AVM toxin in central Florida and the demonstration of AVM toxin transfer through invertebrates indicate a significant risk to the already diminished population of endangered Snail Kites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call