Abstract

Cloud seeding involves boosting precipitation by releasing substances into the air that act as cloud condensation or ice nuclei. These substances encourage the development of clouds and precipitation. It’s like giving Mother Nature a gentle push to assist with rainfall in specific areas. The current work aimed to suggest Al2O3 as an alternate compound in cloud seeding rather than silver iodide. In this research, a unique approach is used to identify condensation nuclei, which play a crucial role in cloud formation and droplet growth. Various samples and four sources were included in the current study; refrigerated helfa powder, Himalayan salt, generator powder, and pollen, were analyzed using different physicochemical instruments. The proportions of chemical compounds in the samples show that there is 1.392% of Al2O3 in Refrigerated helfa which is the highest than in the other 3 sources, while the proportions of elements in the samples indicate that refrigerated helfa contains the lowest toxic compound, and although Al2O3 is insoluble in water, it is hygroscopic and can absorb 6.4% of humidity within 24 hours. As for the surface tension, refrigerated helfa shows lower density and surface tension than the other three sources with values of 0.9480 and 47.89 respectively. Al2O3 shows high humid absorptivity and refrigerated helfa can be used as a main source for Al2O3 which has a low effect on biota and is recommended for use in cloud seeding. However further work is recommended to be carried out in using Al2O3 as an alternative compound to silver iodide in cloud seeding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.