Abstract

A low-tritium-inventory, high-power-density, pool-type chamber approach to inertial confinement fusion is introduced. The concept uses target designs with internal tritium and3He breeding, eliminating the need for a lithium-breeding blanket. The fraction of the fusion energy carried out by neutrons is estimated as 10%, compared with 70% in a typical D-T system, and the neutron spectrum is softer. Liquid metals other than lithium that are less chemically reactive, such as lead, can be used for first-wall protection. The reduced neutron component and the elimination of the need for a thick lithium blanket for tritium breeding lead to higher power densities and more compact chamber designs. The radiation damage at the first structural wall is reduced, leading to potentially longer wall lifetimes. A significant environmental advantage in terms of reduced radioactive release risks under operational and accident conditions is identified, primarily due to the one to two orders of magnitude reduction in the tritium inventories compared with D-T-based systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.