Abstract

Emerging mycotoxins produced by Alternaria spp. were previously reported to exert cytotoxic, genotoxic, but also estrogenic effects in human cells. The involved mechanisms are very complex and not fully elucidated yet. Thus, we followed an in silico target fishing approach to extend knowledge on the possible biological targets underlying the activity of alternariol, taken as the signature compound of Alternaria toxins. Combining ligand-based screening and structure-based modeling, the ubiquitous casein kinase 2 (CK2) was identified as a potential target for the compound. This result was validated in a cell-free in vitro CK2 activity assay, where alternariol inhibited CK2 with an IC50 of 707 nM. As CK2 was recently discussed to influence estrogen receptor (ER) transcription and DNA-binding affinity, we assessed a potential impact on the mRNA levels of ERα or ERβ by qRT-PCR and on nuclear localization of the receptors by confocal microscopy, using estrogen-sensitive Ishikawa cells as a model. While AOH did not affect the transcription of ERα or ERβ, an increase in nuclear localization of ERα after incubation with 10 µM AOH was observed. However, this effect might be due to ER binding affinity and therefore estrogenicity of AOH. Furthermore, in silico docking simulation revealed not only AOH, but also a number of other Alternaria toxins as potential inhibitors of CK2, including alternariol monomethyl ether and the perylene quinone derivative altertoxin II (ATX-II). These findings were representatively confirmed in vitro for the perylene quinone derivative altertoxin II, which was found to inhibit the kinase with an IC50 of 5.1 µM. Taken together, we propose CK2 inhibition as an additional mechanism to consider in future studies for alternariol and several other Alternaria toxins.

Highlights

  • Fungi of the Alternaria genus occur ubiquitously and grow under a wide range of conditions

  • Alternaria toxins are of high interest in toxicology and belong to the so-called “emerging mycotoxins”, a term introduced for mold metabolites which exert toxic effects but are not regulated yet by authorities, due to still insufficient data on toxicity and/or occurrence

  • The screening was done using the FLAP software and the output sorted according to the FLAP “distance score”, which is an overall estimate of the divergence of compounds from the template (AOH in this case) in terms of physico–chemical properties

Read more

Summary

Introduction

Fungi of the Alternaria genus occur ubiquitously and grow under a wide range of conditions. They can infest crops designated for human food production and thereby their toxic secondary metabolites can be found in feed and food. Alternaria toxins are of high interest in toxicology and belong to the so-called “emerging mycotoxins”, a term introduced for mold metabolites which exert toxic effects but are not regulated yet by authorities, due to still insufficient data on toxicity and/or occurrence. Regarding the toxicity of Alternaria contaminations, the latter is considered a lead compound, as it was repeatedly found in commercial food samples and was reported to exert a number of distinct adverse bioactivities (Ostry 2008; Puntscher et al 2018b)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call