Abstract

The abilities of three ionic surfactants—sodium methylnaphthalene sulfonate (SMNS), sodium dodecyl sulfate (SDS), and cetyl trimethylammonium bromide (CTAB)—to alter the wettability of bitumen-treated glass surfaces was examined. Surface wettability was characterized by contact angles, and all measurements were carried out under alkaline conditions by having sodium carbonate (Na2CO3) dissolved in the aqueous phase. It was found that Na2CO3 alone could slightly increase the hydrophilcity of bitumen-treated glass surfaces. With surfactants added to the system, it was demonstrated that SMNS and SDS (both anionic surfactants) were much more effective in enhancing the water wettability of bitumen-treated glass in comparison to CTAB (a cationic surfactant). X-ray photoelectron spectroscopy (XPS) analyses were also conducted to determine the functional groups and relative mass concentrations of various elements on the glass substrates. Based on these results, we speculate that most or all of the adsorbed hydrocarbon material could be removed from a glass substrate through synergistic effects between sodium carbonate, which provides the alkaline condition, and anionic surfactants, which likely interacted with adsorbed cationic materials. This resulted in dramatic alteration in the wettability of bitumen-treated glass surfaces—from oil-wet to water-wet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.