Abstract

Dextran glucosidases show high sequence identity (50%) to Bacillus sp. SAM1606 α-glucosidase, which is more specific for short-chain substrates. Sequence comparison of these enzymes as well as molecular modeling studies predicted that the extension of loop 4 of the (β/α) 8-barrel fold may be responsible for the narrower specificity of SAM1606 α-glucosidase with respect to substrate chain length. Indeed, deletion mutants of SAM1606 α-glucosidase that lack this extension showed higher relative activities toward dextran and long-chain isomaltooligosaccharides. Kinetic and thermodynamic analyses of oligosaccharide hydrolysis catalyzed by SAM1606 α-glucosidase and its deletion mutants suggested that the loss of such extension(s) in loop 4 should energetically destabilize the Michaelis complexes with long-chain substrates to result in smaller differences between the activation free energies for the enzymatic hydrolyses of isomaltoheptaose and isomaltose than those observed for the wild-type enzyme. This is the reason that dextran glucosidase, whose loop 4 is shorter in length, shows broader substrate chain-length specificity than does SAM1606 α-glucosidase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.