Abstract

A functional immune system depends on the production of a wide range of immunoglobulin molecules. Immunoglobulin variable region (IgV) genes are diversified after gene rearrangement by hypermutation. In the DNA deamination model, we have proposed that deamination of dC residues to dU by activation-induced deaminase (AID) triggers this diversification. In hypermutating chicken DT40 B cells, most IgV mutations are dC --> dG/dA or dG --> dC/dT transversions, which are proposed to result from replication over sites of base loss produced by the excision activity of uracil-DNA glycosylase. Blocking the activity of uracil-DNA glycosylase should instead lead to replication over the dU lesion, resulting in dC --> dT (and dG --> dA) transitions. Here we show that expression in DT40 cells of a bacteriophage-encoded protein that inhibits uracil-DNA glycosylase shifts the pattern of IgV gene mutations from transversion dominance to transition dominance. This is good evidence that antibody diversification involves dC --> dU deamination within the immunoglobulin locus itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.