Abstract

Small molecules that target RNA and effect their cleavage are useful chemical probes and potential lead medicines. In this study, we investigate factors affecting degradation of two cancer-associated RNA targets, the mRNA that encodes the transcription factor JUN (c-Jun) and the hairpin precursor to microRNA-372 (pre-miR-372). The two RNA targets harbor the same small-molecule binding site juxtaposed with different neighboring structures. Specifically, pre-miR-372 has AU pairs and contiguous purines on one strand near the small-molecule binding site, making it an ideal substrate for oxidative cleavage via the direct degrader bleomycin A5. In contrast, while JUN mRNA has a similar number of AU pairs near the small-molecule binding site, it lacks contiguous purine nucleotides. Instead, it contains unpaired pyrimidine nucleotides, which are preferred substrates for RNase L, a ribonuclease that can be recruited to RNA with heterobifunctional ribonuclease targeting chimeras (RiboTACs). We hypothesized that structural features surrounding the binding site could be leveraged to program selective small-molecule degradation by alteration of the cleaving module. Indeed, the bleomycin degrader cleaves pre-miR-372 in gastric cancer cells but not JUN mRNA. Conversely, the RiboTAC cleaves JUN mRNA but not pre-miR-372. Thus, the selection of the appropriate cleaving effector moiety for an RNA-binding small molecule can be leveraged to cleave an RNA selectively in a predictable manner, which could have broad implications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.