Abstract

The importance of ProB28 and LysB29 on the self-association of insulin was established by systematically truncating the C terminus of the B chain. The relationship between structure and association was further explored by making numerous amino acid replacements at B28 and B29. Association was studied by circular dichroism, size-exclusion chromatography and ultracentrifugation. Our results show that the location of a prolyl residue at B28 is critical for high-affinity self-association. Removal of ProB28 in a series of C-terminal truncated insulins, or amino acid replacement of ProB28, greatly reduced association. The largest disruption to association was achieved by replacing LysB29 with Pro and varying the amino acid at B28. Several of the analogs were predominantly monomers in solutions up to 3 mg/ml. These amino acid substitutions decreased association by primarily disrupting the formation of dimers. Such amino acid substitutions also substantially reduced the Zn-induced insulin hexamer formation. The formation of monomeric insulins through amino acid replacements was accompanied by conformational changes that may be the cause for decreased association. It is demonstrated that self-association of insulin can be drastically altered by substitution of one or two key amino acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.