Abstract

Neurons can communicate with each other either via exchange of specific molecules at synapses or by direct electrical connections between the cytoplasm of either cell [for review see Bruzzone et al. (1996) Eur. J. Biochem., 238, 1-27]. Although electrical connections are abundant in many nervous systems, little is known about the mechanisms which govern the specificity of their formation. Recent cloning of the innexins--gap junction proteins responsible for electrical coupling in invertebrates (Phelan et al. (1998) Trends Genet., 14, 348-349], has made it possible to study the molecular mechanisms of patterning of the electrical connections between individual neurons in model systems. Here we demonstrate that intracellular injection of mRNA encoding the molluscan innexin Panx1 (Panchin et al. 2000 Curr. Biol., 10, R473-R474) drastically alters the specificity of electrical coupling between identified neurons of the pteropod mollusc Clione limacina.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.