Abstract

CO2 production during ensiling is a source of greenhouse gases emissions and a cause of nutrient loss of silage. To investigate the influence of additives on CO2 production and relevant bacterial communities, stylo and rice straw were ensiled with sucrose and Lactobacillus plantarum (LP). After 30 days fermentation, LP reduced CO2 production (from 66.2 to 0 mL/100 g fresh matter in stylo, from 83.7 to 16.6 mL/100 g fresh matter in rice straw) and weight loss (from 2.71 to 1.72% in stylo, from 2.75 to 2.40% in rice straw). CO2 production was positively correlated (P < 0.05) with Lactococcus (0.99), Leuconostoc (0.55), Lachnoclostridium (0.45), Prevotella (0.23) and was negatively correlated (P < 0.05) with Serratia (-0.66), Sphingobacterium (-0.58), Pediococcus (-0.36). LP decreased the relative abundance of genera positively correlated with CO2 production and increased that of genera negatively correlated. In conclusion, LP could reduce CO2 production by altering bacterial community during ensiling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.