Abstract

This study tested the hypothesis that nitric oxide (NO) synthase inhibition in mice would result in hypertension characterized by increased agonist-induced vasoconstrictor responsiveness and attenuated endothelium-dependent vasodilation. Administration of N-nitro-L-arginine (L-NNA), an NO synthase inhibitor (1 g/L, 4 weeks), via drinking water to mice resulted in significant elevations in blood pressure. Phenylephrine-induced contraction was significantly increased in aortic rings from L-NNA-treated mice compared with rings from control mice. Aortic rings from control mice showed a concentration-dependent relaxation to acetylcholine whereas those obtained from L-NNA-treated mice showed a biphasic response, contracting at lower concentrations while relaxing at higher concentrations. Aortic rings from L-NNA-treated mice had decreased relaxation to acetylcholine and increased sensitivity to sodium nitroprusside compared with control rings. The relaxation induced by an NO-independent soluble guanylyl cyclase activator was not different between groups. In aortic rings from control and L-NNA-treated mice pre-contracted with phenylephrine, the administration of L-NNA to the organ bath caused additional and sustained contraction. When compared with the contraction induced by phenylephrine, L-NNA-induced contraction in aorta from control mice was significantly higher than that in aorta from L-NNA-treated mice. We conclude that mice treated with L-NNA develop hypertension and that a reduction in NO availability is responsible for the changes observed in vascular reactivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.