Abstract
Schizophrenia is characterized by both disrupted neurodevelopmental processes and abnormal brain connectivity. However, few studies have examined the atypical features of brain network topography associated with schizophrenia during childhood and adolescence. We used graph theory to compare the grey matter structural networks of individuals (aged 10-15 years) with early-onset schizophrenia (EOS) (n = 25) and a typically-developing (TD) comparison group (n = 31). Compared with the TD group, EOS patients showed significantly increased clustering and local efficiency across a range of network densities (0.3 – 0.4). The network of EOS patients also had more modules (6 modules in EOS vs. 3 modules in controls), indicating a more segregated network at the cost of functional integration. Although our results were preliminary and failed to survive corrections for multiple comparisons, EOS patients might be characterized by altered nodal centrality in several higher-order associative regions including the prefrontal cortex, the hippocampus and the cerebellum. The EOS structural network also lacked the typical left-hemispheric-dominant hub distribution compared with the TD group. These findings suggest that brain structural network was not only globally but also regionally altered in EOS patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.