Abstract

We have proposed that L-3,4-dihydroxyphenylalanine (L-DOPA) is a neurotransmitter in the central nervous system [Y. Misu et al. (1995) Adv. Pharmac. 32, 427-459]. L-DOPA as a probable neurotransmitter for the primary baroreceptor afferents tonically functions to mediate cardiodepressor control in the nucleus tractus solitarii and also tonically functions to mediate cardiopressor control in the rostral ventrolateral medulla of rats. We further attempted to clarify whether a transmitter-like L-DOPA system is altered in these areas of adult spontaneously hypertensive rats. By microdialysis in the left nucleus tractus solitarii area, the basal L-DOPA release was lower in spontaneously hypertensive rats than that in Wistar-Kyoto rats. This release was partially reduced by tetrodotoxin (1 microM) to the same absolute levels in the two strains. Tonic neuronal L-DOPA release is impaired in this nucleus of spontaneously hypertensive rats. This impairment is not secondarily due to decrease in formation or increase in decarboxylation of L-DOPA, since tyrosine hydroxylase activity was increased in spontaneously hypertensive rats, compared to Wistar-Kyoto rats, while no difference of L-aromatic amino acid decarboxylase activity was seen in the caudal dorsomedial medulla including the nucleus. L-DOPA (10-300 ng) microinjected into the nucleus produced dose-dependent hypotension and bradycardia. A maximum depressor response of spontaneously hypertensive rats to L-DOPA at higher doses was slightly greater than that of Wistar-Kyoto rats. On the other hand, in the left rostral ventrolateral medulla, the basal L-DOPA release was higher in spontaneously hypertensive rats than that in Wistar-Kyoto rats. This release was also partially reduced by tetrodotoxin to the same absolute levels in the two strains. Tonic neuronal L-DOPA release is enhanced in spontaneously hypertensive rats. This enhancement seems to include partially a decrease in decarboxylation of L-DOPA, since L-aromatic amino acid decarboxylase activity was decreased in spontaneously hypertensive rats compared to Wistar-Kyoto rats, while no difference in tyrosine hydroxylase activity was seen. L-DOPA (10-600 ng) produced dose-dependent hypertension and tachycardia. Importantly, a pressor response of spontaneously hypertensive rats to L-DOPA at lower doses was slightly greater than that of Wistar-Kyoto rats. L-DOPA seems to play a transmitter-like role in blood pressure regulation at levels of the nucleus tractus solitarii and rostral ventrolateral medulla in rats.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.