Abstract

BackgroundPreterm infants are at risk for structural disruption of brain connectivity due to perinatal complications encountered during the fetal and neonatal periods. This study aimed to investigate the development of connectivity using diffusion tensor imaging at near-term age and the effect of grade 1 intraventricular hemorrhage on it.MethodsA total of 86 infants (55 preterm infants, 24 full-term infants) without apparent brain injury underwent diffusion magnetic resonance imaging (MRI) between 36 and 41 weeks post-menstrual age. The diffusion-MRI based connectomics were constructed from 64-segmented regions by using the Johns Hopkins University neonate atlas and were weighted with fractional anisotropy. The connectomes were quantified in the structural networks and investigated using network metrics, such as the clustering coefficient, local efficiency, characteristic path length, global efficiency, and small-worldness. We compared the differences in the brain networks of preterm infants with or without grade 1 intraventricular hemorrhage in binary and fractional anisotropy-weighted (wFA) connectomes.ResultsThe 55 preterm infants had a mean gestational age at birth of 29.3 ± 4.1 weeks and the 24 term-born infants, 38.1 ± 1.1 weeks. A total of 13 of the 55 preterm infants (23.6%) were diagnosed with grade 1 intraventricular hemorrhage. The development of connectivity of the brain network in preterm infants without intraventricular hemorrhage was comparable at near-term age to that in term infants. The preterm infants with germinal matrix hemorrhage exhibited higher clustering (0.093 ± 0.015 vs. 0.088 ± 0.007, p = 0.027) and local efficiency (0.151 ± 0.022 vs. 0.141 ± 0.010, p = 0.025), implying the potential for segregation. However, the preterm infants with intraventricular hemorrhage revealed a longer path length (0.291 ± 0.035 vs. 0.275 ± 0.019, p = 0.020) and lower global efficiency (3.998 ± 0.473 vs. 4.212 ± 0.281, p = 0.048), indicating a decreased integration in the wFA connectivity matrix than those without germinal matrix hemorrhage, after correcting for gestational age, sex, bronchopulmonary dysplasia, and age at scan.ConclusionGrade 1 intraventricular hemorrhage in preterm infants may enhance the capacity for local information transfer and the relative reinforcement of the segregation of networks at the expense of global integration capacity.

Highlights

  • Preterm infants are at risk for structural disruption of brain connectivity due to perinatal complications encountered during the fetal and neonatal periods

  • Research on the capacity of structural brain networks elucidated with diffusion magnetic resonance imaging (MRI) to predict functional impairments in very preterm infants has provided insight into the relationship between brain network topology and neurodevelopment

  • We introduced the following two different pipelines: binary and fractional anisotropy (FA)-weighted; the former shows whether the connection between regions exists, [28] while the latter presents the FA network normalized by the total FA weight of the wholebrain connectivity to independently assess the brain organization and to gauge the strength of the overall network [29]

Read more

Summary

Introduction

Preterm infants are at risk for structural disruption of brain connectivity due to perinatal complications encountered during the fetal and neonatal periods. This study aimed to investigate the development of connectivity using diffusion tensor imaging at near-term age and the effect of grade 1 intraventricular hemorrhage on it. Research on the capacity of structural brain networks elucidated with diffusion magnetic resonance imaging (MRI) to predict functional impairments in very preterm infants has provided insight into the relationship between brain network topology and neurodevelopment. Preterm infants are at risk for structural disruption of brain connectivity due to the perinatal complications encountered during the fetal and neonatal period. Research has been conducted on the value of structural brain networks ascertained with diffusion MRI to predict the functional impairments and neurodevelopmental outcomes in very preterm children [7, 8]. Our previous study on preterm infants has revealed higher small-worldness in preterm babies when compared to full-term controls at a termequivalent age [13]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.