Abstract

Anorexia and bulimia nervosa are severe eating disorders that share many behaviors. Structural and functional brain circuits could provide biological links that those disorders have in common. We recruited 77 young adult women, 26 healthy controls, 26 women with anorexia and 25 women with bulimia nervosa. Probabilistic tractography was used to map white matter connectivity strength across taste and food intake regulating brain circuits. An independent multisample greedy equivalence search algorithm tested effective connectivity between those regions during sucrose tasting. Anorexia and bulimia nervosa had greater structural connectivity in pathways between insula, orbitofrontal cortex and ventral striatum, but lower connectivity from orbitofrontal cortex and amygdala to the hypothalamus (P<0.05, corrected for comorbidity, medication and multiple comparisons). Functionally, in controls the hypothalamus drove ventral striatal activity, but in anorexia and bulimia nervosa effective connectivity was directed from anterior cingulate via ventral striatum to the hypothalamus. Across all groups, sweetness perception was predicted by connectivity strength in pathways connecting to the middle orbitofrontal cortex. This study provides evidence that white matter structural as well as effective connectivity within the energy-homeostasis and food reward-regulating circuitry is fundamentally different in anorexia and bulimia nervosa compared with that in controls. In eating disorders, anterior cingulate cognitive–emotional top down control could affect food reward and eating drive, override hypothalamic inputs to the ventral striatum and enable prolonged food restriction.

Highlights

  • Anorexia and bulimia nervosa are severe psychiatric disorders with high mortality.[1]

  • The brain circuitry of food intake regulation depends on the interaction of the hypothalamus, which has a central role in energy homeostasis, with brain regions such as prefrontal and orbitofrontal cortex (OFC), insula, midbrain and ventral striatum, a brain circuitry that integrates taste perception, food reward value and cognitive– emotional associations with food.[5]

  • The results of this study indicate that both anorexia and bulimia nervosa are associated with widespread alterations in white matter structural as well as effective connectivity in taste-reward and appetite-regulating pathways

Read more

Summary

Introduction

Anorexia and bulimia nervosa are severe psychiatric disorders with high mortality.[1]. Anorexia and bulimia nervosa aggregate in families, and shared biological underpinnings have been hypothesized.[4] The brain circuitry of food intake regulation depends on the interaction of the hypothalamus, which has a central role in energy homeostasis, with brain regions such as prefrontal and orbitofrontal cortex (OFC), insula, midbrain and ventral striatum, a brain circuitry that integrates taste perception, food reward value and cognitive– emotional associations with food.[5] Alterations in those circuits in both disorders could point toward shared vulnerabilities. Functional magnetic resonance brain imaging (fMRI) indicated greater insula activation to food images,[14] as well as higher resting-state synchrony between anterior cingulate cortex and precuneus,[15] other studies found opposite brain activation in response to visual food cues[16] or sweet taste stimulation.[17,18,19]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.