Abstract

Dysthyroid optic neuropathy (DON) is a serious vision-threatening complication of thyroid-associated ophthalmopathy (TAO). Exploration of the underlying mechanisms of DON is critical for its timely clinical diagnosis. We hypothesized that TAO patients with DON may have altered brain functional networks. We aimed to explore the alterations of static and dynamic functional connectomes in patients with and without DON using resting-state functional magnetic resonance imaging with the graph theory method. A cross-sectional study was conducted at a grade A tertiary hospital with 66 TAO patients (28 DON and 38 non-DON) and 30 healthy controls (HCs). Main outcome measures included topological properties of functional networks. For static properties, DON patients exhibited lower global efficiency (Eg), local efficiency, normalized clustering coefficient, small-worldness (σ), and higher characteristic path length (Lp) than HCs. DON and non-DON patients both exhibited varying degrees of abnormalities in nodal properties. Meanwhile, compared with non-DON, DON patients exhibited abnormalities in nodal properties in the orbitofrontal cortex and visual network (VN). For dynamic properties, the DON group exhibited higher variance in Eg and Lp than non-DON and HC groups. A strengthened subnetwork with VN as the core was identified in the DON cohort. Significant correlations were found between network properties and clinical variables. For distinguishing DON, the combination of static and dynamic network properties exhibited optimal diagnostic performance. Functional network alterations were observed both in DON and non-DON patients, providing novel insights into the underlying neural mechanisms of disease. Functional network properties may be potential biomarkers for reflecting the progression of TAO from non-DON to DON.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.