Abstract

Evidence from both human and murine cardiomyocytes suggests that truncated isoforms of Kv1.5 can be expressed in vivo. Using whole-cell patch-clamp recordings, we have characterized the activation and inactivation properties of Kv1.5DeltaN209, a naturally occurring short form of human Kv1.5 that lacks roughly 75% of the T1 domain. When expressed in HEK 293 cells, this truncated channel exhibited a V(1/2) of -19.5 +/- 0.9 mV for activation and -35.7 +/- 0.7 mV for inactivation, compared with a V(1/2) of -11.2 +/- 0.3 mV for activation and -0.9 +/- 1.6 mV for inactivation in full-length Kv.15. Kv1.5DeltaN209 channels exhibited several features rarely observed in voltage-gated K(+) channels and absent in full-length Kv1.5, including a U-shaped voltage dependence of inactivation and "excessive cumulative inactivation," in which a train of repetitive depolarizations resulted in greater inactivation than a continuous pulse. Kv1.5DeltaN209 also exhibited a stronger voltage dependence to recovery from inactivation, with the time to half-recovery changing e-fold over 30 mV compared with 66 mV in full-length Kv1.5. During trains of human action potential voltage clamps, Kv1.5DeltaN209 showed 30-35% greater accumulated inactivation than full-length Kv1.5. These results can be explained with a model based on an allosteric model of inactivation in Kv2.1 (Klemic, K.G., C.-C. Shieh, G.E. Kirsch, and S.W. Jones. 1998. Biophys. J. 74:1779-1789) in which an absence of the NH(2) terminus results in accelerated inactivation from closed states relative to full-length Kv1.5. We suggest that differential expression of isoforms of Kv1.5 may contribute to K(+) current diversity in human heart and many other tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.