Abstract

Although previous studies have demonstrated regional gray matter (GM) structural abnormalities in adolescents with major depressive disorder (MDD), how the topological organization of GM networks is affected in these patients is still unclear. Structural magnetic resonance imaging data were acquired from 100 first-episode drug-naïve adolescent MDD patients and 80 healthy controls (HCs). Whole-brain GM structural network was constructed for each subject, and a graph theory analysis was used to calculate the topological metrics of GM networks. Adolescent MDD patients showed significantly lower cluster coefficient and local efficiency compared to HCs. Compared to controls, adolescent MDD patients showed higher nodal centralities in the bilateral cuneus, left lingual gyrus, and right middle occipital gyrus and lower nodal centralities in the bilateral dorsolateral superior frontal gyrus, bilateral middle frontal gyrus, right anterior cingulate and paracingulate gyri, bilateral hippocampus, bilateral amygdala, bilateral caudate nucleus, and bilateral thalamus. Nodal centralities of the hippocampus were negatively associated with symptom severity and illness duration. Our findings suggest disrupted topological organization of GM structural networks in adolescent MDD patients. Impaired local segregation and abnormal nodal centralities in the prefrontal-subcortical-limbic areas and visual cortex regions may play important roles in the neurobiology of adolescent-onset MDD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.