Abstract

BACKGROUND Chronic allograft dysfunction (CAD) is the leading cause of graft loss among kidney transplant recipients (KTRs). Bile acids (BAs) play an important role in regulating inflammatory process, which is the major contributor to the development of CAD. The aim of this study was to evaluate the association between BAs metabolic dysregulation and CAD in KTRs. MATERIAL AND METHODS Fifteen serum BA species were determined in 43 healthy controls (HCs) and 131 KTRs by UPLC-MS/MS. KTRs were grouped into stable renal function (STA) and CAD1 and CAD2 groups based on eGFR levels. Circulating CYP7A1, CYP7B1, CYP27A1, and SLCO2B1 mRNA levels were determined by RT-PCR. RESULTS Total BA concentrations were comparable among the 4 groups. However, KTRs showed significantly different BAs profiling compared to HCs. KTRs with severe CAD (CAD2) had significantly lower unconjugated BAs and secondary BAs (SBAs) compared to the other 3 groups. KTRs had significantly lower SBAs/primary BAs (PBAs) ratios than HCs, which were comparable among the 3 KTR groups. Conjugated/unconjugated BAs ratios increased significantly with the deterioration of allograft function, which was further confirmed by correlation analysis. Differential correlation network analysis revealed that perturbations in intraclass and interclass BA coregulation existed during CAD progression. Moreover, relative gene expressions of CYP7B1 and CYP27A1 were positively correlated with eGFR. CONCLUSIONS BA species profiling, but not total BA concentrations, was significantly altered in KTRs with CAD. The shifts from unconjugated BAs toward conjugated BAs, SBAs toward PBAs, and distinct pairwise BAs coregulation patterns were the main characteristics of KTRs with CAD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call