Abstract

IntroductionNoradrenergic denervation is thought to aggravate motor dysfunction in Parkinson's disease (PD). In a previous PET study with the norepinephrine transporter (NART) ligand 11C-MeNER, we detected reduced NART binding in primary sensorimotor cortex (M1S1) of PD patients. Idiopathic rapid-eye-movement sleep behaviour disorder (iRBD) is a phenotype of prodromal PD. Using 11C-MeNER PET, we investigated whether iRBD patients showed similar NART binding reductions in M1S1 cortex as PD patients. Additionally, we investigated whether 11C-MeNER binding and loss of nigrostriatal dopamine storage capacity measured with 18F-DOPA PET were correlated. Methods17 iRBD patients, 16 PD patients with (PDRBD+) and 14 without RBD (PDRBD−), and 25 control subjects underwent 11C-MeNER PET. iRBD patients also had 18F-DOPA PET. Volume-of-interest analyses and voxel-level statistical parametric mapping were performed. ResultsPartial-volume corrected 11C-MeNER binding potential (BPND) values in M1S1 differed across the groups (P = 0.022) with the iRBD and PDRBD+ groups showing significant reductions (controls vs. iRBD P = 0.007; control vs. PDRBD+P = 0.008). Voxel-wise comparisons confirmed reductions of M1S1 11C-MeNER binding in PD and iRBD patients. Significant correlation was seen between putaminal 18F-DOPA uptake and thalamic 11C-MeNER binding in iRBD patients (r2 = 0.343, P = 0.013). ConclusionsThis study found altered noradrenergic neurotransmission in the M1S1 cortex of iRBD patients. The observed reduction of M1S1 11C-MeNER binding in iRBD may represent noradrenergic terminal degeneration or physiological down-regulation of NARTs in this prodromal phenotype of PD. The correlation between thalamic 11C-MeNER binding and putaminal 18F-DOPA binding suggests that these neurotransmitter systems degenerate in parallel in the iRBD phenotype of prodromal PD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call