Abstract

Purpose : The differences in the heat shock gene regulation between the RIF-1 cell line and its heat resistant derivative TR4 are further characterized. Methods and Materials : In vitro gel retardation assays were used to assess the presence of activated heat shock transcription factor in the two cell lines. The levels of the heat-inducible HSP 70.1, the constitutive HSC 70, the germ line-specific HSP 70.2, and the HSP 28 mRNAs in both untreated and iso-heated RIF-1 and TR4 cells were determined using the polymerase chain reaction coupled with the reverse transcriptase reaction. Induction and decay of induced heat shock protein synthesis was measured by 35S-methionine labeling of proteins. Results : Unheated TR4 cells display characteristics of heat shocked RIF-1 cells. TR4 cells have a constitutively activated heat shock transcription factor and elevated levels of the HSP 70.1, HSC 70, and the HSP 28 mRNAs. Upon an equal heat dose of 45 C, 15 min, the TR4 cells exhibited a more rapid onset in heat shock mRNA and protein induction than did the RIF-1 cells. During the recovery from heat shock, the activated heat shock transcription factor and the induced HSP70 mRNAs decayed more slowly in the TR4 cells, although the protein synthesis pattern of the TR4 cells returned to control levels more rapidly following heat shock than did protein synthesis of the RIF-1 cells. Conclusion : Unheated TR4 cells are similar to heat shocked RIF-1 cells at the transcriptional level. Induced HSP70 expression is modulated by the severity of the heat treatment (or the degree of heat damage) perceived by the cells rather than by the absolute heat dose given. We propose that the unheated TR4 cells are locked into the “ON” state of the heat shock response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call