Abstract

We have previously shown decreased pulmonary lymph flow in our lamb model of chronically increased pulmonary blood flow, created by the in utero placement of an 8-mm aortopulmonary shunt. The purpose of this study was to test the hypothesis that abnormal lymphatic function in shunt lambs is due to impaired lymphatic endothelial nitric oxide (NO)-cGMP signaling resulting in increased lymphatic vascular constriction and/or impaired relaxation. Thoracic duct rings were isolated from 4-wk-old shunt (n = 7) and normal (n = 7) lambs to determine length-tension properties, vascular reactivity, and endothelial NO synthase protein. At baseline, shunt thoracic duct rings had 2.6-fold higher peak to peak tension and a 2-fold increase in the strength of contractions compared with normal rings (P < 0.05). In response to norepinephrine, shunt thoracic duct rings had a 2.4-fold increase in vascular tone compared with normal rings (P < 0.05) and impaired relaxation in response to the endothelium-dependent dilator acetylcholine (63% vs. 13%, P < 0.05). In vivo, inhaled NO (40 ppm) increased pulmonary lymph flow (normalized for resistance) ∼1.5-fold in both normal and shunt lambs (P < 0.05). Inhaled NO exposure increased bioavailable NO [nitrite/nitrate (NOx); ∼2.5-fold in normal lambs and ∼3.4-fold in shunt lambs] and cGMP (∼2.5-fold in both) in the pulmonary lymph effluent (P < 0.05). Chronic exposure to increased pulmonary blood flow is associated with pulmonary lymphatic endothelial injury that disrupts NO-cGMP signaling, leading to increased resting vasoconstriction, increased maximal strength of contraction, and impaired endothelium-dependent relaxation. Inhaled NO increases pulmonary lymph NOx and cGMP levels and pulmonary lymph flow in normal and shunt lambs. Therapies that augment NO-cGMP signaling within the lymphatic system may provide benefits, warranting further study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.