Abstract
Pulmonary endothelial cell injury is central to the pathophysiology of acute lung injury. Mechanical ventilation can cause endothelial disruption and injury, even in the absence of preexisting inflammation. Platelet-endothelial cell adhesion molecule-1 is a transmembrane protein connecting adjacent endothelial cells. We hypothesized that injurious mechanical ventilation will increase circulating lung endothelial-derived microparticles, defined as microparticles positive for platelet-endothelial cell adhesion molecule-1, which could serve as potential biomarkers and mediators of ventilator-induced lung injury. Prospective randomized, controlled, animal investigation. A hospital preclinical animal laboratory. Forty-eight Sprague-Dawley rats. Animals were randomly allocated to one of the three following ventilatory protocols for 4 hours: spontaneous breathing (control group), mechanical ventilation with low tidal volume (6 mL/kg), and mechanical ventilation with high tidal volume (20 mL/kg). In both mechanical ventilation groups, positive end-expiratory pressure of 2 cm H2O was applied. We analyzed histologic lung damage, gas exchange, wet-to-dry lung weight ratio, serum cytokines levels, circulating endothelial-derived microparticles, platelet-endothelial cell adhesion molecule-1 lung protein content, and immunohistochemistry. When compared with low-tidal volume mechanical ventilation, high-tidal volume ventilation increased lung edema score and caused gas-exchange deterioration. These changes were associated with a marked increased of circulating endothelial-derived microparticles and a reduction of platelet-endothelial cell adhesion molecule-1 protein levels in the high-tidal volume lungs (p < 0.0001). There is an endothelial-derived microparticle profile associated with disease-specific features of ventilator-induced lung injury. This profile could serve both as a biomarker of acute lung injury and, potentially, as a mediator of systemic propagation of pulmonary inflammatory response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.