Abstract

It has not been examined whether the pressure-natriuresis response is altered in the insulin-resistant condition. Furthermore, despite an important role of nitric oxide (NO) in modulating pressure-natriuresis, no investigations have been conducted assessing the renal interstitial NO production in insulin resistance. The present study examined whether pressure-natriuresis was altered in insulin-resistant obese Zucker rats (OZ) and assessed the cortical and medullary nitrate/nitrite (NOx) levels with the use of the renal microdialysis technique. In OZ, serum insulin/glucose ratio (23.0+/-4.0x10(-8), n=9) and blood pressure (119+/-3 mm Hg) were greater than those in lean Zucker rats (LZ; 7.0+/-1.9x10(-8) and 103+/-4 mm Hg, n=9). The pressure-natriuresis curve in OZ was shifted to higher renal perfusion pressure (RPP), and the slope was blunted compared with that in LZ (0.073+/-0.015 vs 0.217+/-0.047 microEq/min kidney weight/mm Hg, P<0.05). The basal renal NOx level was reduced in OZ (cortex, 4.032+/-0.331 micromol/L; medulla, 4. 329+/-0.515 micromol/L) compared with that in LZ (cortex, 7.315+/-1. 102 micromol/L; medulla: 7.698+/-0.964 micromol/L). Furthermore, elevating RPP increased the medullary NOx in LZ, but this pressure-induced response was lost in OZ. Four-week treatment with troglitazone, an insulin-sensitizing agent, improved hyperinsulinemia, systemic hypertension, and basal renal NOx levels (cortex, 5.639+/-0.286 micromol/L; medulla, 5.978+/-0.284 micromol/L), and partially ameliorated the pressure-natriuresis curves; the slope of pressure-natriuresis curves and elevated RPP-induced NOx, however, were not corrected. In conclusion, our study suggests that insulin resistance is closely associated with abnormal pressure-natriuresis and hypertension. These deranged renal responses to insulin resistance are most likely attributed to impaired medullary NO production within the medulla.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.