Abstract

The sense of 'loss of control' (LOC), or a feeling of being unable to stop eating or control what or how much one is eating, is the most salient aspect of binge eating. However, the neural alterations that may contribute to this experience and eating behavior remain poorly understood. We used functional near-infrared spectroscopy (fNIRS) to measure activation in the prefrontal cortices of 23 women with bulimia nervosa (BN) and 23 healthy controls (HC) during two tasks: a novel go/no-go task requiring inhibition of eating responses, and a standard go/no-go task requiring inhibition of button-pressing responses. Women with BN made more commission errors on both tasks. BN subgroups with the most severe LOC eating (n = 12) and those who felt most strongly that they binge ate during the task (n = 12) showed abnormally reduced bilateral ventromedial prefrontal cortex (vmPFC) and right ventrolateral prefrontal cortex (vlPFC) activation associated with eating-response inhibition. In the entire BN sample, lower eating-task activation in right vlPFC was related to more frequent and severe LOC eating, but no group differences in activation were detected on either task when this full sample was compared with HC. BN severity was unrelated to standard-task activation. Results provide initial evidence that diminished PFC activation may directly contribute to more severe eating-specific control deficits in BN. Our findings support vmPFC and vlPFC dysfunction as promising treatment targets, and indicate that eating-specific tasks and fNIRS may be useful tools for identifying neural mechanisms underlying dysregulated eating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call