Abstract

Colorectal cancer (CRC) is one of the most common tumors in developed countries. The five-year survival rate decreases depending on how advanced the CRC is when first diagnosed. Screening has been proven to greatly reduce mortality from colorectal cancer, but an ideal screening tool is far from being established. Here, we aimed to discover and validate early CRC biomarkers by means of an untargeted/targeted metabolomic approach. A preliminary untargeted analysis of plasma lipids performed on a small patient cohort (30 plasma samples) revealed some alterations that occurred in the presence of this tumor. In particular, medium-chain fatty acids with between six and twelve carbon atoms (C6-C12) were found to be the lipid class that showed the most marked changes upon the development of CRC. In order to evaluate the utility of this lipid class as diagnostic CRC biomarkers, a further study based on a wider cohort of patients (117 plasma samples) was performed. Using a targeted approach, these fatty acids were quantified in plasma samples by means of fast gas chromatography coupled to a time-of-flight analyzer. Plasma samples from patients with CRCs at different tumor stages were analyzed and compared to those from healthy subjects, ulcerative colitis patients, high-grade dysplasia adenoma patients, and breast cancer patients in order to test the specificity and sensitivity of these possible biomarkers. Results revealed significant differences among the considered groups in terms of their C6, C8, C10, and C12 fatty acid plasma concentrations. In particular, receiver operating characteristic (ROC) curves obtained for the C10 fatty acid gave an area under the curve of 0.8195 along with a sensitivity of 87.8% and a specificity of 80%, strongly suggesting that it could be a valuable early diagnostic biomarker of CRC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.