Abstract

Transgenic tobaccoNicotiana tabacum L. var. SR1) plants that over-express theEscherichia coli trehalose-6-phosphate synthase (TPS) gene(otsA) synthesized small amounts of trehalose (<400 µg g-1 leaf) while non-transformants produced no detectable trehalose. Some transgenic plants expressing a high level ofotsA exhibited stunted growth and morphologically altered leaves. We tested F22 homozygous plants devoid of phenotypic changes to determine their physiological responses to dehydration and salinity stresses. All transgenic plants maintained better leaf turgidity under a limited water supply or after treatment with polyethylene glycol (PEG). Furthermore, fresh weight was maintained at higher levels after either treatment. The initial leaf water potential was higher in transgenic plants than non-transformants, but, in both plant types, was decreased to a comparable degree following dehydration. When grown with 250 mM NaCl, transgenic plants exhibited a significant delay in leaf withering and chlorosis, as well as more efficient seed germination. Our results suggest that either trehalose or trehalose-6-phosphate can act as an osmoprotective molecule without maintaining water potential, in contrast to other osmolytes. Furthermore, both appear to protect young embryos under unfavorable water status to ensure subsequent germination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.