Abstract

The Ag receptor of cytotoxic CD8+ T lymphocytes recognizes peptides of 8-10 aa bound to MHC class I molecules. This Ag recognition event leads to the activation of the CD8+ lymphocyte and subsequent lysis of the target cell. Altered peptide ligands are analogues derived from the original antigenic peptide that commonly carry amino acid substitutions at TCR contact residues. TCR engagement by these altered peptide ligands usually impairs normal T cell function. Some of these altered peptide ligands (antagonists) are able to specifically antagonize and inhibit T cell activation induced by the wild-type antigenic peptide. Despite significant advances made in understanding TCR antagonism, the molecular interactions between the TCR and the MHC/peptide complex responsible for the inhibitory activity of antagonist peptides remain elusive. To approach this question, we have identified altered peptide ligands derived from the vesicular stomatitis virus peptide (RGYVYQGL) that specifically antagonize an H-2Kb/vesicular stomatitis virus-specific TCR. Furthermore, by site-directed mutagenesis, we altered single amino acid residues of the complementarity-determining region 3 of the beta-chain of this TCR and tested the effect of these point mutations on Ag recognition and TCR antagonism. Here we show that a single amino acid change on the TCR CDR3 beta loop can modulate the TCR-antagonistic properties of an altered peptide ligand. Our results highlight the role of the TCR complementarity-determining region 3 loops for controlling the nature of the T cell response to TCR/altered peptide ligand interactions, including those leading to TCR antagonism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.