Abstract
We investigate two types altered Lucas numbers denoted and defined by adding or subtracting a value from the square of the Lucas numbers. We achieve these numbers form as the consecutive products of the Fibonacci numbers. Therefore, consecutive sum-subtraction relations of altered Lucas numbers and their Binet-like formulas are given by using some properties of the Fibonacci numbers. Also, we explore the gcd sequences of r–successive terms of altered Lucas numbers denoted and , , according to the greatest common divisor (gcd) properties of consecutive terms of the Fibonacci numbers. We show that these sequences are periodic or Fibonacci sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.