Abstract

Studies on human cell hybrids between a cervical carcinoma cell line, HeLa, and normal fibroblasts have indicated that their tumorigenicity is under the control of a putative tumor suppressor on chromosome 11. We have previously demonstrated that a tumorigenic cell hybrid CGL4 expresses a larger glucose transporter, GLUT1, due to altered glycosylation when compared to the nontumorigenic counterpart CGL1. In this study, we demonstrated this glycosylation change in GLUT1 in γ-ray-induced tumorigenic mutants (GIMs) isolated from CGL1 cells as expressing a tumor-associated surface antigen, intestinal alkaline phosphatase. In contrast, GLUT1 in the γ-irradiated nontumorigenic control cells (CONs) did not show this alteration. In accordance with this glycosylation change, affinity to 2-deoxyglucose in these GIM clones was increased by about twofold when compared to the nontumorigenic CONs. These results suggest a close correlation between the glycosylation change in GLUT1 with increased affinity to D-glucose and tumorigenicity of these human cell hybrids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.