Abstract

To determine if NMDAR regulate the chondrocyte clock and phenotype. Chondrocytes isolated from macroscopically-normal (MN) and osteoarthritic human cartilage were treated with NMDAR antagonists or transfected with GRIN2A or GRIN2B-targetting siRNA. H5 chondrocytes were transfected with GluN2B-expression plasmids. Clock genes and chondrocyte phenotypic markers were measured by RT-qPCR. PER2 amplitude was higher and BMAL1 amplitude lower in osteoarthritic compared to MN chondrocytes. In osteoarthritic chondrocytes, NMDAR inhibition restored PER2 and BMAL1 expression to levels similar to MN chondrocytes, and resulted in reduced MMP13 and COL10A1. Paradoxically, NMDAR inhibition in MN chondrocytes resulted in increased PER2, decreased BMAL1 and increased MMP13 and COL10A1. Osteoarthritic, but not MN chondrocytes expressed GluN2B NMDAR subunits. GluN2B knockdown in osteoarthritic chondrocytes restored expression of circadian clock components and phenotypic markers to levels similar to MN chondrocytes. Ectopic expression of GluN2B resulted in reduced BMAL1, increased PER2 and altered SOX9, RUNX2 and MMP13 expression. Knockdown of PER2 mitigated the effects of GluN2B on SOX9 and MMP13. NMDAR regulate the chondrocyte clock and phenotype suggesting NMDAR may also regulate clocks in other peripheral tissues. GluN2B expression in osteoarthritis may contribute to pathology by altering the chondrocyte clock.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call