Abstract
Alpha-sarcoglycan (ASG) is a transmembrane protein of the dystrophin-associated complex, and absence of ASG causes limb-girdle muscular dystrophy. We hypothesize that disruption of the sarcoglycan complex may alter muscle extensibility and disrupt the coupling between passive transverse and axial contractile elements in the diaphragm. We determined the length-tension relationships of the diaphragm of young ASG-deficient mice and their controls during uniaxial and biaxial loading. We also determined the isometric contractile properties of the diaphragm muscles from mutant and normal mice in the absence and presence of passive transverse stress. We found that the diaphragm muscles of the null mutants for the protein ASG show 1) significant decrease in muscle extensibility in the directions of the muscle fibers and transverse to fibers, 2) significant reductions in force-generating capacity, and 3) significant reductions in coupling between longitudinal and transverse properties. Thus these findings suggest that the sarcoglycan complex serves a mechanical function in the diaphragm by contributing to muscle passive stiffness and to the modulation of the contractile properties of the muscle.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.