Abstract

BackgroundRight ventricular structure and function is a major predictor of outcomes in pulmonary hypertension (PH), yet the underlying mechanisms remain poorly understood. Growing evidence suggests the importance of autophagy in cardiac remodeling; however, its dynamics in the process of right ventricle(RV) remodeling in PH has not been fully explored. We sought to study the time course of cardiomyocyte autophagy in the RV in PH and determine whether mammalian target of rapamycin (mTOR) and Beclin-1 hypoxia-related pro-autophagic pathways are underlying mechanisms.MethodsRats were studied at 2, 4, and 6 weeks after subcutaneous injection of 60 mg/kg monocrotaline (MCT) (MCT-2 W, 4 W, 6 W) or vehicle (CON-2 W, 4 W, 6 W). Cardiac hemodynamics and RV function were assessed in rats. Autophagy structures and markers were assessed using transmission electron microscope, RT-qPCR, immunohistochemistry staining, and western blot analyses. Western blot was also used to quantify the expression of mTOR and Beclin-1 mediated pro-autophagy signalings in the RV.ResultsTwo weeks after MCT injection, pulmonary artery systolic pressure increased and mild RV hypertrophy without RV dilation was observed. RV enlargement presented at 4 weeks with moderately decreased function, whereas typical characteristics of RV decompensation and failure occurred at 6 weeks thus demonstrating the progression of RV remodeling in the MCT model. A higher LC3 (microtubule- associated protein light chain 3) II/I ratio, upregulated LC3 mRNA and protein levels, as well as accumulation of autophagosomes in RV of MCT rats indicated autophagy induction. Autophagy activation was coincident with increased pulmonary artery systolic pressure. Pro-autophagy signaling pathways were activated in a RV remodeling stage-dependent manner since phospho-AMPK (adenosine monophosphate-activated protein kinase)-α were primarily upregulated and phospho-mTOR suppressed in the RV at 2 and 4 weeks post-MCT injection, whearas, BNIP3 (Bcl2-interacting protein 3) and beclin-1 expression were relatively low during these stages, they were significantly upregulated after 6 weeks in this model.ConclusionsOur findings provide evidence of sustained activation of autophagy in RV remodeling of MCT induced PH model, while pro-autophagic signaling pathways varied depending on the phase.

Highlights

  • Right ventricular structure and function is a major predictor of outcomes in pulmonary hypertension (PH), yet the underlying mechanisms remain poorly understood

  • MCT rats enter a phase of decompensation and heart failure in the fifth to sixth week after MCT injection mimicking signs of human PH associated with WHO class III and IV [2, 7]

  • To mimic the natural history of right ventricular (RV) remodeling progression associated with MCT in our study, we divided the animals into 2, 4, and 6week subgroups

Read more

Summary

Introduction

Right ventricular structure and function is a major predictor of outcomes in pulmonary hypertension (PH), yet the underlying mechanisms remain poorly understood. Growing evidence suggests the importance of autophagy in cardiac remodeling; its dynamics in the process of right ventricle(RV) remodeling in PH has not been fully explored. Pulmonary hypertension (PH) is a devastating and fatal disease characterized by pulmonary vascular remodeling and vasoconstriction, resulting in increased pulmonary vascular resistance and subsequent right ventricular (RV) hypertrophy and heart failure [1,2,3]. Autophagosomes can be observed using a transmission electron microscope and are considered “gold standards” in terms of morphological/ultrastructural evidence of autophagy activation, [13] while upregulation of p62 poses as a marker of autophagosomal clearance [14, 15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call