Abstract

Fragile X syndrome is caused by the absence of functional fragile X mental retardation protein (FMRP), an RNA binding protein. The molecular mechanism of aberrant protein synthesis in fmr1 KO mice is closely associated with the role of FMRP in mRNA transport, delivery, and local protein synthesis. We show that GFP-labeled Fmr1 and CaMKIIalpha mRNAs undergo decelerated motion at 0-40 min after group I mGluR stimulation, and later recover at 40-60 min. Then we investigate targeting of mRNAs associated with FMRP after neuronal stimulation. We find that FMRP is synthesized closely adjacent to stimulated mGluR5 receptors. Moreover, in WT neurons, CaMKIIalpha mRNA can be delivered and translated in dendritic spines within 10 min in response to group I mGluR stimulation, whereas KO neurons fail to show this response. These data suggest that FMRP can mediate spatial mRNA delivery for local protein synthesis in response to synaptic stimulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.