Abstract

Spasticity and balance disability are major complications following traumatic brain injury (TBI). Although monoaminergic inputs provide critical adaptive neuromodulations to the motor system, data are not available regarding the levels of monoamines in the brain regions related to motor functions following repetitive blast TBI (bTBI). The objective of this study was to determine if mild, repetitive bTBI results in spasticity/balance deficits and if these are correlated with altered levels of norepinephrine, dopamine, and serotonin in the brain regions related to the motor system. Repetitive bTBI was induced by a blast overpressure wave in male rats on days 1, 4, and 7. Following bTBI, physiological/behavioral tests were conducted and tissues in the central motor system (i.e., motor cortex, locus coeruleus, vestibular nuclei, and lumbar spinal cord) were collected for electrochemical detection of norepinephrine, dopamine, and serotonin by high-performance liquid chromatography. The results showed that norepinephrine was significantly increased in the locus coeruleus and decreased in the vestibular nuclei, while dopamine was significantly decreased in the vestibular nuclei. On the other hand, serotonin was significantly increased in the motor cortex and the lumbar spinal cord. Because these monoamines play important roles in regulating the excitability of neurons, these results suggest that mild, repetitive bTBI-induced dysregulation of monoaminergic inputs in the central motor system could contribute to spasticity and balance disability. This is the first study to report altered levels of multiple monoamines in the central motor system following acute mild, repetitive bTBI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call