Abstract

Acyl carrier protein (ACP) is a required cofactor for fatty acid synthesis in Escherichia coli. Mutants lacking beta-ketoacyl-ACP synthase II activity (fabF1 or fabF3) possessed a different molecular species of ACP (F-ACP) that was separated from the normal form of the protein by conformationally sensitive gel electrophoresis. Synthase I mutants contained the normal protein. Complementation of fabF1 mutants with an F' factor harboring the wild-type synthase II allele resulted in the appearance of normal ACP, whereas complementation with an F' possessing the fabF2 allele (a mutation that produces a synthase II enzyme with altered catalytic activity) resulted in the production of both forms of ACP. The structural difference between F-ACP and ACP persisted after the removal of the 4'-phosphopantetheine prosthetic group, and both forms of the protein had identical properties in an in vitro fatty acid synthase assay. Both ACP and F-ACP were purified to homogeneity, and their primary amino acid sequences were determined. The two ACP species were identical but differed from the sequence reported for E. coli E-15 ACP in that an Asn instead of an Asp was at position 24 and an Ile instead of a Val was at position 43. Therefore, F-ACP appears to be a modification of ACP that is detected when beta-ketoacyl-ACP synthase II activity is impaired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.