Abstract

Toll-like receptor 4 (TLR4) mediated activation of the nuclear transcription factor κB (NF-κB) signaling pathway by mastitis initiates expression of genes associated with inflammation and the innate immune response. In this study, the profile of mastitis-induced differential gene expression in the mammary tissue of Chinese Holstein cattle was investigated by Gene-Chip microarray and bioinformatics. The microarray results revealed that 79 genes associated with the TLR4/NF-κB signaling pathway were differentially expressed. Of these genes, 19 were up-regulated and 29 were down-regulated in mastitis tissue compared to normal, healthy tissue. Statistical analysis of transcript and protein level expression changes indicated that 10 genes, namely TLR4, MyD88, IL-6, and IL-10, were up-regulated, while, CD14, TNF-α, MD-2, IL-β, NF-κB, and IL-12 were significantly down-regulated in mastitis tissue in comparison with normal tissue. Analyses using bioinformatics database resources, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the Gene Ontology Consortium (GO) for term enrichment analysis, suggested that these differently expressed genes implicate different regulatory pathways for immune function in the mammary gland. In conclusion, our study provides new evidence for better understanding the differential expression and mechanisms of the TLR4 /NF-κB signaling pathway in Chinese Holstein cattle with mastitis.

Highlights

  • Mastitis is the persistent inflammatory response of mammary tissue attributed to intra-mammary invasion of pathogens [1]

  • Comparison of the two groups revealed that 19 genes from the Toll-like receptor 4 (TLR4)/NF-kB signaling pathway were up-regulated (2 fold), whereas, 29 genes were down-regulated in mastitis tissue (2 fold) (Table 2)

  • In order to clarify the different biological patterns of the two groups, genes of the TLR4/NF-kB signaling pathway were individually analyzed by Gene Ontology Consortium (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), with criteria for significance set at P< 0.01

Read more

Summary

Introduction

Mastitis is the persistent inflammatory response of mammary tissue attributed to intra-mammary invasion of pathogens [1]. Many different microbial and environmental factors can induce mastitis, so, it is important to understand the mechanisms controlling the immune response at the molecular level [2]. A better understanding of the molecular events and transition periods in response to different pathogens [1] would provide mechanistic insight into the physiological changes that render the mammary gland more susceptible to mastitis. This, in turn, would fuel the development of better preventative measures and bioinformatics-based approaches for data mining [3].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.