Abstract

Ames dwarf mice (df/df) are deficient in growth hormone, prolactin, and thyroid-stimulating hormone and live significantly longer than their normal siblings. In the current study, we found that the hormone deficiencies affect methionine metabolism. We previously reported that the dwarf mice exhibit enzyme activities and levels that combat oxidative stress more efficiently than those of normal mice. Moreover, methionine or metabolites of methionine are involved in antioxidative processes. Thus, we performed an experiment that compared various parameters of methionine metabolism between 18-month old male dwarf ( N=6) and wild type ( N=5) mice. The specific activity of liver methionine adenosyltransferase (MAT) was significantly elevated (205%, p<0.0001) in the dwarf mice, as were cystathionine synthase (50%, p<0.01), cystathionase (83%, p<0.001), and glycine N-methyltransferase (GNMT, 91%, p<0.001) activities. Even though the activities of MAT and GNMT were elevated, the concentration of liver S-adenosylmethionine was decreased (24%, p<0.001) and S-adenosylhomocysteine increased (113%, p<0.001) in the dwarf mice. These data indicate that dwarf mice, compared to wild type mice, have a markedly different metabolism of methionine. Altered methionine metabolism may partially explain earlier reports indicating less oxidative damage to proteins in dwarf mice. Taken together, the data suggest that methionine metabolism may play a role in oxidative defense in the dwarf mouse and should be studied as a potential mechanism of extended lifespan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.