Abstract

The high co-occurrence of somatic symptom disorder (SSD) in Parkinson's disease (PD) patients suggests overlapping pathophysiology. However, little is known about the neural correlates of SSD and their possible interactions with PD. Existing studies have shown that SSD is associated with reduced task-evoked activity in the medial prefrontal cortex (mPFC), a central node of the default-mode network (DMN). SSD is also associated with abnormal γ-aminobutyric acid (GABA) content, a marker of local inhibitory tone and regional hypoactivity, in the same area when SSD co-occurs with PD. To disentangle the individual and shared effects of SSD and PD on mPFC neurotransmission and connectivity patterns and help disclose the neural mechanisms of comorbidity in the PD population. The study cohort included 18 PD patients with SSD (PD + SSD), 18 PD patients, 13 SSD patients who did not exhibit neurologic disorders, and 17 healthy subjects (HC). Proton magnetic resonance (MR) spectroscopy evaluated GABA levels within a volume of interest centered on the mPFC. Resting-state functional MR imaging investigated the region's functional connectivity patterns. Compared to HC or PD groups, the mPFC of SSD subjects exhibited higher GABA levels and connectivity. Higher mPFC connectivity involved DMN regions in SSD patients without PD and regions of the executive and attentional networks (EAN) in patients with PD comorbidity. Aberrant reconfigurations of connectivity patterns between the mPFC and the EAN are distinct features of the PD + SSD comorbidity. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call