Abstract

The mechanical properties of smooth muscles in aorta and vas deferens were studied in mice with a mutated basic calponin locus to learn the physiological function of calponin. The intact smooth muscles were stimulated with high KCl and the force development was compared between calponin deficient (knockout, KO) mice and wild type (WT) ones. The isometric force induced by various concentrations of high KCl was lower in KO than in WT both in aorta and in vas deferens. The length-force relations were compared between KO and WT. The active isometric force in KO was significantly lower at most muscle lengths examined than in WT without the change in resting force both in aorta and in vas deferens. In vas deferens, the rate of force development after quick release in length at the peak force was significantly faster in KO than in WT. The above results show that the force development is lower and the rate of cross-bridge cycle is faster in KO mice than in WT ones, suggesting that calponin plays basic roles in the control of the contraction of smooth muscle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.