Abstract

Chronic kidney disease (CKD) is associated with an increased risk of fragility fractures, but the underlying pathophysiological mechanism remains obscure. We performed an in vivo experimental study to examine the roles of uremia and abnormal mineral/parathyroid metabolism in the development of bone metabolic abnormalities in uremic rats. Male Sprague-Dawley rats were divided into four groups, comprising sham operation (high turnover bone control=HTB-Cont), 5/6-nephrectomy (high turnover bone nephrectomized=HTB-Nx), thyroparathyroidectomy (low turnover bone control=LTB-Cont), and thyroparathyroidectomy plus 5/6 nephrectomy (low turnover bone nephrectomized=LTB-Nx), and maintained for 16weeks. Uremia was successfully created in the LTB-Nx and HTB-Nx groups, while hyperparathyroidism was only found in the HTB-Nx group. Cancellous bone histomorphometry revealed significantly higher bone turnover in the HTB-Nx group than in the LTB-Nx group. Storage modulus at 1Hz and tan delta in cortical bone of the femur, which represent the viscoelastic mechanical properties, were significantly lower in both Nx groups than in the Cont groups regardless of bone metabolism. Pentosidine-to-matrix ratio was increased and crystallinity was decreased in both Nx groups regardless of bone turnover. Mineral-to-matrix ratio was significantly decreased in the HTB-Nx group, but increased in the LTB-Nx group. Enzymatic collagen crosslinks were decreased in the HTB-Nx group. The degree of orientation of the c-axis in carbonated hydroxyapatite (biological apatite=BAp) crystallites was decreased in both Nx groups regardless of bone metabolism. Stepwise multivariate regression revealed that pentosodine-to-matrix ratio and BAp preferential c-axis orientation were significantly associated with storage modulus and tan delta. In conclusion, bone elastic mechanical properties deteriorated regardless of bone metabolism or bone mass in rats with chronic kidney injury. Various changes in bone mineral properties were associated with CKD, including abnormal parathyroid function, impaired bone turnover, and uremia associated with the accumulation of uremic toxins, were responsible for these changes. Pentosidine-to-matrix ratio and BAp orientation at position 5 were the two meaningful determinants of elastic bone mechanical strength, and both factors were associated with the severity of uremia, but not parathyroid function or bone metabolism. These two factors may account for the increased bone fragility among CKD patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.