Abstract

Defects in digit number or fusion as a teratogenic response are well documented in humans and intensively studied in various mouse models. Maternal exposure to excess levels of all-trans-retinoic acid (RA) at gestational day 9.5 induces postaxial ectrodactyly (digit loss) in the murine C57BL/6N strain but not in the SWV/Fnn strain. Whole-mount in situ hybridization was used to examine the differential expression of limb patterning genes at the transcriptional level between the two mouse strains following the maternal exposure to a teratogenic level of RA. The detection of a gene with altered expression was followed by either the evaluation of other genes that were synexpressed or with an assessment of downstream genes. In the C57BL/6N limb bud following maternal RA administration, gene-specific perturbations were observed within hours of the RA injection in the posterior pre-AER (apical ectodermal ridge) (Fgf8, Dlx3, Bmp4, Sp8, but not Dlx2 or p63), whereas these genes were normally expressed in the SWV/Fnn limb bud. Furthermore, although RA caused comparable reductions of Shh expression between the strains in the 12 h after administration, some Shh downstream genes were differentially expressed (e.g., Gli1, Ptc, and Hoxd13), whereas others were not (e.g., Fgf4, Bmp4, and Gremlin). It is proposed that altered gene expression in both pre-AER and mesoderm is involved in the pathogenesis of postaxial digit loss, and that because the alterations in the pre-AER occur relatively early in the temporal sequence of events, those changes are candidates for an initiating factor in the malformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call