Abstract

Free radicals are involved in the aging process. In this study, the profile of primary antioxidant enzymes that scavenge reactive oxygen species (ROS) was examined for the first time in human skin fibroblasts from progeria, a premature aging disease. Altered levels of antioxidant enzymes were found in progeria cells. Basal levels of MnSOD were decreased in progeria cells as well as a blunted induction in response to chronic stress. This change may contribute to the accelerated aging process in progeria cells. In contrast, the levels of CuZnSOD showed no progeria-related change. Two H2O2removing enzymes demonstrated a significant reduction in progeria cells: only 50% of normal CAT activity and 30% of normal GPX activity can be detected in progeria cells. This diminished H2O2removing capacity in progeria cells may lead to an imbalance of intracellular ROS and therefore may play an important role in the development of progeria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.