Abstract

Acetylcholine (ACh) is a central neurotransmitter that is used for signal transmission among neurons. For signal transmission in neurons, a neurotransmitter must bind to its receptor in order to produce an action potential. It is known that in Myasthenia Gravis (MG) cases, autoantibodies could block this binding. In the future, the treatment of MG could be achieved via modulation of molecular interaction between ACh and acetylcholine receptor (AChR). This study suggests that if an atom on a ligand (i.e. a neurotransmitter) is replaced with its isotope, it may cause charge redistribution such as that the binding between ligand and its receptor may be improved. Hence suggesting that with replacement of atoms with their isotopes in any biologically important ligand could alter its affinity towards its corresponding receptor, which would have a wide array of applications in medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.