Abstract

To model how consuming a low-carbohydrate (LC) diet influences food intake and body weight. Food intake and body weight were monitored in rats with access to chow (CH), LC-high-fat (HF), or HF diets. After 8 weeks, rats received intracerebroventricular injections of a melanocortin agonist (melanotan-II) and antagonist (SHU9119), and feeding responses were measured. At sacrifice, plasma hormones and hypothalamic expression of mRNA for proopiomelanocortin (POMC), melanocortin-4 receptor, neuropeptide Y (NPY), and agouti related protein (AgRP) were assessed. A second set of rats had access to diet (chow or LC-HF) for 4 weeks followed by 24 h food deprivation on two occasions, after which food intake and hypothalamic POMC, NPY, and AgRP mRNA expression were measured. HF rats consumed more food and gained more weight than rats on CH or LC-HF diets. Despite similar intakes and weight gains, LC-HF rats had increased adiposity relative to CH rats. LC-HF rats were more sensitive to melanotan-II and less sensitive to SHU9119. LC-HF rats had increased plasma leptin and ghrelin levels and decreased insulin levels, and patterns of NPY and POMC mRNA expression were consistent with those of food-deprived rats. LC-HF rats did not show rebound hyperphagia after food deprivation, and levels NPY, POMC, and AgRP mRNA expression were not affected by deprivation. Our results demonstrate that an LC diet influences multiple systems involved in the controls of food intake and body weight. These data also suggest that maintenance on an LC-HF diet affects food intake by reducing compensatory responses to food deprivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call