Abstract
To explore alterations in functional connectivity (FC) focusing on hippocampal subfields in benign paroxysmal positional vertigo (BPPV) patients with residual dizziness (RD) after successful canalith repositioning procedure (CRP). We conducted resting-state functional magnetic resonance imaging (fMRI) on 95 BPPV patients, comprising 50 patients with RD and 45 without. Seed-to-voxel and seed-to-seed analyses were employed to examine changes in FC between the two groups. The hippocampal subfields, including the bilateral dentate gyrus (DG), cornu ammonis (CA), entorhinal cortex (EC), subiculum, and hippocampal amygdalar transition area (HATA) were selected as seeds. Additionally, we assessed the relationship between abnormal FC and clinical symptoms. Seed-to-voxel analysis indicated that, compared to non-RD patients, those with RD exhibited decreased FC between the right DG and right parietal operculum cortex, right HATA and right precuneus, left HATA and left precuneus, left EC and cerebellar vermis 8/-crus 1, and between the left subiculum and left angular gyrus. Conversely, we observed increased FC between the left CA and left lingual gyrus, as well as between the right CA and right fusiform gyrus in RD patients. Furthermore, these variations in FC were significantly correlated with clinical features including the duration of RD and scores on the Hamilton Anxiety Scale and Dizziness Handicap Inventory. BPPV patients with RD exhibited altered FC between hippocampal subfields and brain regions associated with spatial orientation and navigation, vestibular and visual processing, and emotional regulation. These findings offer novel insights into the pathophysiological mechanisms in BPPV patients with RD following successful CRP.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.